If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+5x-162=0
a = 4; b = 5; c = -162;
Δ = b2-4ac
Δ = 52-4·4·(-162)
Δ = 2617
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{2617}}{2*4}=\frac{-5-\sqrt{2617}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{2617}}{2*4}=\frac{-5+\sqrt{2617}}{8} $
| 9w-8w+w=14 | | 14x+11=9x-54 | | 8x=12=4x+24 | | (8x−12)=(4x+24) | | 600x=-1 | | 8x−12=4x+24 | | (x+20)+(2x+10)+(x-10)=180 | | 12x-60=11x-100 | | 5e+9=6 | | (x+20)+(2x-10)+(x-10)=180 | | 17t+2t+3t17t=10 | | (X^2+3)(12x+12)=0 | | -8.75x+14=-5.25x—3.5 | | 28.7=17+3m | | 67-4x=46 | | 7-(3x-4)=4-4x | | x+0.105x=100000 | | 5x+2+5x+33=14x+3 | | 119=a+25 | | 5(x+2)+£-3=2(x+12)+35 | | x+2x+4-5x=4x-8 | | X+19=y | | -2(x-8)-5=11 | | 2(y+(5)+7y=19 | | 4x2-30x=28 | | 15-x=8x+3 | | 2(b+–18)=–20 | | 265=-v+214 | | 15=|2z| | | -18+y=-2 | | 5.4x=2.7 | | 20=x/4+x/12 |